筛法
素数筛法
引入
如果我们想要知道小于等于
一个自然的想法是对于小于等于
埃拉托斯特尼筛法
过程
考虑这样一件事情:对于任意一个大于
如果我们从小到大考虑每个数,然后同时把当前这个数的所有(比自己大的)倍数记为合数,那么运行结束的时候没有被标记的数就是素数了。
实现
=== "C++"
```cpp
int Eratosthenes(int n) {
int p = 0;
for (int i = 0; i <= n; ++i) is_prime[i] = 1;
is_prime[0] = is_prime[1] = 0;
for (int i = 2; i <= n; ++i) {
if (is_prime[i]) {
prime[p++] = i; // prime[p]是i,后置自增运算代表当前素数数量
if ((long long)i * i <= n)
for (int j = i * i; j <= n; j += i)
// 因为从 2 到 i - 1 的倍数我们之前筛过了,这里直接从 i
// 的倍数开始,提高了运行速度
is_prime[j] = 0; // 是i的倍数的均不是素数
}
}
return p;
}
```
=== "Python"
```python
def Eratosthenes(n):
p = 0
for i in range(0, n + 1):
is_prime[i] = True
is_prime[0] = is_prime[1] = False
for i in range(2, n + 1):
if is_prime[i]:
prime[p] = i
p = p + 1
if i * i <= n:
j = i * i
while j <= n:
is_prime[j] = False
j = j + i
return p
```
以上为 Eratosthenes 筛法(埃拉托斯特尼筛法,简称埃氏筛法),时间复杂度是
现在我们就来看看推导过程:
如果每一次对数组的操作花费 1 个单位时间,则时间复杂度为:
其中 if (prime[i])
进入 true 分支的次数;
根据 Mertens 第二定理,存在常数
所以 Eratosthenes 筛法 的时间复杂度为
根据
当然,上面的做法效率仍然不够高效,应用下面几种方法可以稍微提高算法的执行效率。
筛至平方根
显然,要找到直到
=== "C++"
```cpp
int n;
vector<char> is_prime(n + 1, true);
is_prime[0] = is_prime[1] = false;
for (int i = 2; i * i <= n; i++) {
if (is_prime[i]) {
for (int j = i * i; j <= n; j += i) is_prime[j] = false;
}
}
```
=== "Python"
```python
is_prime = [True] * (n + 1)
is_prime[0] = is_prime[1] = False
for i in range(2, int(sqrt(n)) + 1):
if is_prime[i]:
j = i * i
while j <= n:
is_prime[j] = False
j += i
```
这种优化不会影响渐进时间复杂度,实际上重复以上证明,我们将得到
只筛奇数
因为除 2 以外的偶数都是合数,所以我们可以直接跳过它们,只用关心奇数就好。
首先,这样做能让我们内存需求减半;其次,所需的操作大约也减半。
减少内存的占用
我们注意到筛法只需要
但是,这种称为 位级压缩 的方法会使这些位的操作复杂化。任何位上的读写操作都需要多次算术运算,最终会使算法变慢。
因此,这种方法只有在
值得一提的是,存在自动执行位级压缩的数据结构,如 C++ 中的 vector<bool>
和 bitset<>
。
分块筛选
由优化“筛至平方根”可知,不需要一直保留整个 is_prime[1...n]
数组。为了进行筛选,只保留到 prime[1...sqrt(n)]
。并将整个范围分成块,每个块分别进行筛选。这样,我们就不必同时在内存中保留多个块,而且 CPU 可以更好地处理缓存。
设
值得注意的是,我们在处理第一个数字时需要稍微修改一下策略:首先,应保留
以下实现使用块筛选来计算小于等于
int count_primes(int n) {
const int S = 10000;
vector<int> primes;
int nsqrt = sqrt(n);
vector<char> is_prime(nsqrt + 1, true);
for (int i = 2; i <= nsqrt; i++) {
if (is_prime[i]) {
primes.push_back(i);
for (int j = i * i; j <= nsqrt; j += i) is_prime[j] = false;
}
}
int result = 0;
vector<char> block(S);
for (int k = 0; k * S <= n; k++) {
fill(block.begin(), block.end(), true);
int start = k * S;
for (int p : primes) {
int start_idx = (start + p - 1) / p;
int j = max(start_idx, p) * p - start;
for (; j < S; j += p) block[j] = false;
}
if (k == 0) block[0] = block[1] = false;
for (int i = 0; i < S && start + i <= n; i++) {
if (block[i]) result++;
}
}
return result;
}
分块筛法的渐进时间复杂度与埃氏筛法是一样的(除非块非常小),但是所需的内存将缩小为
块大小
线性筛法
埃氏筛法仍有优化空间,它会将一个合数重复多次标记。有没有什么办法省掉无意义的步骤呢?答案是肯定的。
如果能让每个合数都只被标记一次,那么时间复杂度就可以降到
=== "C++"
```cpp
void init(int n) {
for (int i = 2; i <= n; ++i) {
if (!vis[i]) {
pri[cnt++] = i;
}
for (int j = 0; j < cnt; ++j) {
if (1ll * i * pri[j] > n) break;
vis[i * pri[j]] = 1;
if (i % pri[j] == 0) {
// i % pri[j] == 0
// 换言之,i 之前被 pri[j] 筛过了
// 由于 pri 里面质数是从小到大的,所以 i乘上其他的质数的结果一定会被
// pri[j]的倍数筛掉,就不需要在这里先筛一次,所以这里直接 break
// 掉就好了
break;
}
}
}
}
```
=== "Python"
```python
def init(n):
for i in range(2, n + 1):
if vis[i] == False:
pri[cnt] = i
cnt = cnt + 1
for j in range(0, cnt):
if i * pri[j] > n:
break
vis[i * pri[j]] = 1
if i % pri[j] == 0:
"""
i % pri[j] == 0
换言之,i 之前被 pri[j] 筛过了
由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定会被
pri[j]的倍数筛掉,就不需要在这里先筛一次,所以这里直接 break
掉就好了
"""
break
```
上面的这种 线性筛法 也称为 Euler 筛法(欧拉筛法)。
注意到筛法求素数的同时也得到了每个数的最小质因子。
筛法求欧拉函数
注意到在线性筛中,每一个合数都是被最小的质因子筛掉。比如设
观察线性筛的过程,我们还需要处理两个部分,下面对
如果
那如果
实现
=== "C++"
```cpp
void pre() {
for (int i = 1; i <= 5000000; i++) {
is_prime[i] = 1;
}
int cnt = 0;
is_prime[1] = 0;
phi[1] = 1;
for (int i = 2; i <= 5000000; i++) {
if (is_prime[i]) {
prime[++cnt] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt && i * prime[j] <= 5000000; j++) {
is_prime[i * prime[j]] = 0;
if (i % prime[j])
phi[i * prime[j]] = phi[i] * phi[prime[j]];
else {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
}
}
}
```
=== "Python"
```python
def pre():
cnt = 0
is_prime[1] = False
phi[1] = 1
for i in range(2, 5000001):
if is_prime[i]:
cnt = cnt + 1
prime[cnt] = i
phi[i] = i - 1
j = 1
while j <= cnt and i * prime[j] <= 5000000:
is_prime[i * prime[j]] = 0
if i % prime[j]:
phi[i * prime[j]] = phi[i] * phi[prime[j]]
else:
phi[i * prime[j]] = phi[i] * prime[j]
break
j = j + 1
```
筛法求莫比乌斯函数
定义
根据莫比乌斯函数的定义,设
若
实现
=== "C++"
```cpp
void pre() {
mu[1] = 1;
for (int i = 2; i <= 1e7; ++i) {
if (!v[i]) mu[i] = -1, p[++tot] = i;
for (int j = 1; j <= tot && i <= 1e7 / p[j]; ++j) {
v[i * p[j]] = 1;
if (i % p[j] == 0) {
mu[i * p[j]] = 0;
break;
} else {
mu[i * p[j]] = -mu[i];
}
}
}
}
```
=== "Python"
```python
def pre():
mu[1] = 1
for i in range(2, int(1e7 + 1)):
if v[i] == 0:
mu[i] = -1
tot = tot + 1
p[tot] = i
j = 1
while j <= tot and i <= 1e7 // p[j]:
v[i * p[j]] = 1
if i % p[j] == 0:
mu[i * p[j]] = 0
break
else:
mu[i * p[j]] = -mu[i]
j = j + 1
```
筛法求约数个数
用
约数个数定理
定理:若
证明:我们知道
实现
因为
=== "C++"
```cpp
void pre() {
d[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!v[i]) v[i] = 1, p[++tot] = i, d[i] = 2, num[i] = 1;
for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
v[p[j] * i] = 1;
if (i % p[j] == 0) {
num[i * p[j]] = num[i] + 1;
d[i * p[j]] = d[i] / num[i * p[j]] * (num[i * p[j]] + 1);
break;
} else {
num[i * p[j]] = 1;
d[i * p[j]] = d[i] * 2;
}
}
}
}
```
=== "Python"
```python
def pre():
d[1] = 1
for i in range(2, n + 1):
if v[i] == 0:
v[i] = 1; tot = tot + 1; p[tot] = i; d[i] = 2; num[i] = 1
j = 1
while j <= tot and i <= n // p[j]:
v[p[j] * i] = 1
if i % p[j] == 0:
num[i * p[j]] = num[i] + 1
d[i * p[j]] = d[i] // num[i * p[j]] * (num[i * p[j]] + 1)
break
else:
num[i * p[j]] = 1
d[i * p[j]] = d[i] * 2
j = j + 1
```
筛法求约数和
实现
=== "C++"
```cpp
void pre() {
g[1] = f[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!v[i]) v[i] = 1, p[++tot] = i, g[i] = i + 1, f[i] = i + 1;
for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
v[p[j] * i] = 1;
if (i % p[j] == 0) {
g[i * p[j]] = g[i] * p[j] + 1;
f[i * p[j]] = f[i] / g[i] * g[i * p[j]];
break;
} else {
f[i * p[j]] = f[i] * f[p[j]];
g[i * p[j]] = 1 + p[j];
}
}
}
}
```
=== "Python"
```python
def pre():
g[1] = f[1] = 1
for i in range(2, n + 1):
if v[i] == 0:
v[i] = 1; tot = tot + 1; p[tot] = i; g[i] = i + 1; f[i] = i + 1
j = 1
while j <= tot and i <= n // p[j]:
v[p[j] * i] = 1
if i % p[j] == 0:
g[i * p[j]] = g[i] * p[j] + 1
f[i * p[j]] = f[i] // g[i] * g[i * p[j]]
break
else:
f[i * p[j]] = f[i] * f[p[j]]
g[i * p[j]] = 1 + p[j]
```
一般的积性函数
假如一个 积性函数
设合数
假如
本节部分内容译自博文 Решето Эратосфена 与其英文翻译版 Sieve of Eratosthenes。其中俄文版版权协议为 Public Domain + Leave a Link;英文版版权协议为 CC-BY-SA 4.0。
贡献者:@WineChord@383494@cubeheadsun@Imple@Menci@TianKong_y@Yiming@queenwen@WenzelTian@Yisheng@忘怀@Monad@CCXXXI@Shuzhou@AgOH@Anonymous@代建杉@Untitled_unrevised@Great-designer
本页面最近更新:2/3/2023, 12:00:00 AM,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用