杜教筛
积性函数
在数论题目中,常常需要根据一些 积性函数 的性质,求出一些式子的值。
积性函数:对于所有互质的
常见的积性函数有:
设
积性函数有如下性质:
若
中的
在莫比乌斯反演的题目中,往往要求出一些数论函数的前缀和,利用 杜教筛 可以快速求出这些前缀和。
杜教筛
杜教筛被用来处理数论函数的前缀和问题。对于求解一个前缀和,杜教筛可以在低于线性时间的复杂度内求解
对于数论函数
我们想办法构造一个
对于任意一个数论函数
略证:
那么可以得到递推式
那么假如我们可以快速对
问题一
题目大意:求
莫比乌斯函数前缀和
由 狄利克雷卷积,我们知道:
观察到
直接计算的时间复杂度为
对于较大的值,需要用 map
存下其对应的值,方便以后使用时直接使用之前计算的结果。
欧拉函数前缀和
当然也可以用杜教筛求出
由于题目所求的是
观察到,只需求出莫比乌斯函数的前缀和,就可以快速计算出欧拉函数的前缀和了。时间复杂度
使用杜教筛求解
求
同样的,
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <map>
using namespace std;
const int maxn = 2000010;
long long T, n, pri[maxn], cur, mu[maxn], sum_mu[maxn];
bool vis[maxn];
map<long long, long long> mp_mu;
long long S_mu(long long x) { // 求mu的前缀和
if (x < maxn) return sum_mu[x];
if (mp_mu[x]) return mp_mu[x]; // 如果map中已有该大小的mu值,则可直接返回
long long ret = (long long)1;
for (long long i = 2, j; i <= x; i = j + 1) {
j = x / (x / i);
ret -= S_mu(x / i) * (j - i + 1);
}
return mp_mu[x] = ret; // 路径压缩,方便下次计算
}
long long S_phi(long long x) { // 求phi的前缀和
long long ret = (long long)0;
long long j;
for (long long i = 1; i <= x; i = j + 1) {
j = x / (x / i);
ret += (S_mu(j) - S_mu(i - 1)) * (x / i) * (x / i);
}
return (ret - 1) / 2 + 1;
}
int main() {
scanf("%lld", &T);
mu[1] = 1;
for (int i = 2; i < maxn; i++) { // 线性筛预处理mu数组
if (!vis[i]) {
pri[++cur] = i;
mu[i] = -1;
}
for (int j = 1; j <= cur && i * pri[j] < maxn; j++) {
vis[i * pri[j]] = true;
if (i % pri[j])
mu[i * pri[j]] = -mu[i];
else {
mu[i * pri[j]] = 0;
break;
}
}
}
for (int i = 1; i < maxn; i++)
sum_mu[i] = sum_mu[i - 1] + mu[i]; // 求mu数组前缀和
while (T--) {
scanf("%lld", &n);
printf("%lld %lld\n", S_phi(n), S_mu(n));
}
return 0;
}
问题二
大意:求
其中
利用
对
需要构造积性函数
单纯的
化一下卷积
再化一下
分块求解即可
#include <cmath>
#include <cstdio>
#include <map>
using namespace std;
const int N = 5e6, NP = 5e6, SZ = N;
long long n, P, inv2, inv6, s[N];
int phi[N], p[NP], cnt, pn;
bool bp[N];
map<long long, long long> s_map;
long long ksm(long long a, long long m) { // 求逆元用
long long res = 1;
while (m) {
if (m & 1) res = res * a % P;
a = a * a % P, m >>= 1;
}
return res;
}
void prime_work(int k) { // 线性筛phi,s
bp[0] = bp[1] = 1, phi[1] = 1;
for (int i = 2; i <= k; i++) {
if (!bp[i]) p[++cnt] = i, phi[i] = i - 1;
for (int j = 1; j <= cnt && i * p[j] <= k; j++) {
bp[i * p[j]] = 1;
if (i % p[j] == 0) {
phi[i * p[j]] = phi[i] * p[j];
break;
} else
phi[i * p[j]] = phi[i] * phi[p[j]];
}
}
for (int i = 1; i <= k; i++)
s[i] = (1ll * i * i % P * phi[i] % P + s[i - 1]) % P;
}
long long s3(long long k) { // 立方和
return k %= P, (k * (k + 1) / 2) % P * ((k * (k + 1) / 2) % P) % P;
}
long long s2(long long k) { // 平方和
return k %= P, k * (k + 1) % P * (k * 2 + 1) % P * inv6 % P;
}
long long calc(long long k) { // 计算S(k)
if (k <= pn) return s[k];
if (s_map[k]) return s_map[k]; // 对于超过pn的用map离散存储
long long res = s3(k), pre = 1, cur;
for (long long i = 2, j; i <= k; i = j + 1)
j = k / (k / i), cur = s2(j),
res = (res - calc(k / i) * (cur - pre) % P) % P, pre = cur;
return s_map[k] = (res + P) % P;
}
long long solve() {
long long res = 0, pre = 0, cur;
for (long long i = 1, j; i <= n; i = j + 1) {
j = n / (n / i);
cur = calc(j);
res = (res + (s3(n / i) * (cur - pre)) % P) % P;
pre = cur;
}
return (res + P) % P;
}
int main() {
scanf("%lld%lld", &P, &n);
inv2 = ksm(2, P - 2), inv6 = ksm(6, P - 2);
pn = (long long)pow(n, 0.666667); // n^(2/3)
prime_work(pn);
printf("%lld", solve());
return 0;
} // 不要为了省什么内存把数组开小,会卡80
贡献者:@Tifa@purple-vine@nanmenyangde@Menci@mgt@kenlig@Great-designer
本页面最近更新:2/3/2023, 12:00:00 AM,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用