二分图最大匹配
为了描述方便将两个集合分成左和右两个部分,所有匹配边都是横跨左右两个集合,可以假想成男女配对。
假设图有
题目描述
给定一个二分图
增广路算法 Augmenting Path Algorithm
因为增广路长度为奇数,路径起始点非左即右,所以我们先考虑从左边的未匹配点找增广路。
注意到因为交错路的关系,增广路上的第奇数条边都是非匹配边,第偶数条边都是匹配边,于是左到右都是非匹配边,右到左都是匹配边。
于是我们给二分图 定向,问题转换成,有向图中从给定起点找一条简单路径走到某个未匹配点,此问题等价给定起始点
性质
因为要枚举
实现
转为网络最大流模型
二分图最大匹配可以转换成网络流模型。
将源点连上左边所有点,右边所有点连上汇点,容量皆为
如果使用 Dinic 算法 求该网络的最大流,可在
Dinic 算法分成两部分,第一部分用
但因为容量为
接下来前
代码可以参考 Dinic 算法 的参考实现,这里不再给出。
补充
二分图最小点覆盖(König 定理)
最小点覆盖:选最少的点,满足每条边至少有一个端点被选。
二分图中,最小点覆盖
将二分图点集分成左右两个集合,使得所有边的两个端点都不在一个集合。
考虑如下构造:从左侧未匹配的节点出发,按照匈牙利算法中增广路的方式走,即先走一条未匹配边,再走一条匹配边。由于已经求出了最大匹配,所以这样的增广路一定以匹配边结束。在所有经过这样“增广路”的节点上打标记。则最后构造的集合是:所有左侧未打标记的节点和所有右侧打了标记的节点。
首先,易证这个集合的大小等于最大匹配。打了标记的节点一定都是匹配边上的点,一条匹配的边两侧一定都有标记(在增广路上)或都没有标记,所以两个节点中必然有一个被选中。
其次,这个集合是一个点覆盖。一条匹配边一定有一个点被选中,而一条未匹配的边一定是增广路的一部分,而右侧端点也一定被选中。
同时,不存在更小的点覆盖。为了覆盖最大匹配的所有边,至少要有最大匹配边数的点数。
二分图最大独立集
最大独立集:选最多的点,满足两两之间没有边相连。
因为在最小点覆盖中,任意一条边都被至少选了一个顶点,所以对于其点集的补集,任意一条边都被至多选了一个顶点,所以不存在边连接两个点集中的点,且该点集最大。因此二分图中,最大独立集
习题
参考资料
贡献者:@Yufan@WenzelTian@Great-designer@5ab-juruo@XTh3G4p@mgt@Xeonacid
本页面最近更新:2/3/2023, 12:00:00 AM,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用