最大团搜索算法


前置知识:

引入

在计算机科学中,团问题指的是在给定的图中找到团(顶点的子集,都彼此相邻,也称为完全子图)的计算问题。

团的问题在现实生活中也有体现。例如我们考虑一个社交网络,其中图的点代表用户,图的边代表其所连接的两个用户互相认识。那么我们找到了一个团,也就找到了一群互相认识的人。

我们如果想要找到这个社交网络中最大的一群互相认识的人,那么就需要用到最大团搜索算法。

我们已经介绍了

极大团 的概念,最大团指的是点数量最多的极大团。

解释

想法是利用递归和回溯,用一个列表存储点,每次加入点进来都检查这些点是否仍在一个团中。如果加入进来这个点后就无法还是一个团了,就回溯到满足条件的位置,重新加入别的点。

采用回溯策略的原因是,我们并不知道某个顶点 最终 是否是最大团中的成员。如果递归算法选择 作为最大团的成员时,并没有找到最大团,那么应该回溯,并查找最大团中没有 的解。

过程

Bron-Kerbosch 算法对于这种想法进行了优化实现。它的基础形式是通过给定三个集合: 来递归地进行搜索。步骤如下:

  1. 初始化集合 分别为空,集合 是图中所有点的集合。
  2. 每次从集合 中取顶点 ,当集合中没有顶点时,有两种情况:
    1. 集合 是最大团,此时集合 为空
    2. 无最大团,此时回溯
  3. 对于每一个从集合 中取得的顶点 ,有如下处理:
    1. 将顶点 加到集合 中,之后递归集合
    2. 从集合 中删除顶点 ,并将顶点 添加到集合
    3. 若集合 都为空,则集合 即为最大团

此方法也可继续优化。为了节省时间让算法更快的回溯,可以通过设定关键点(pivot vertex)来进行搜索。另一种优化思路是在开始时把所有点排序,枚举时按照下标顺序,防止重复。

实现

伪代码

R := {}
P := node set of G 
X := {}

BronKerbosch1(R, P, X):
    if P and X are both empty:
        report R as a maximal clique
    for each vertex v in P:
        BronKerbosch1(R ⋃ {v}, P ⋂ N(v), X ⋂ N(v))
        P := P \ {v}
        X := X ⋃ {v}

C++ 实现

例题

题目大意:给出 个人,其中有 对朋友,求最大团数量。

思路:模版题,要用 Bron-Kerbosch 算法

伪代码:

 BronKerbosch(All, Some, None):  
     if Some and None are both empty:  
         report All as a maximal clique // 所有点已选完,且没有不能选的点,累加答案  
     for each vertex v in Some: // 枚举 Some 中的每一个元素  
         BronKerbosch1(All ⋃ {v}, Some ⋂ N(v), None ⋂ N(v))   
         // 将 v 加入 All,显然只有与 v 为朋友的人才能作为备选,None 中也只有与 v 为朋友的才会对接下来造成影响  
         Some := Some - {v} // 已经搜过,从 Some 中删除,加入 None  
         None := None ⋃ {v} 

为了节省时间和让算法更快的回溯,我们可以通过设定关键点(pivot vertex) 进行优化。

我们知道在上述的算法中必然有许多重复计算之前计算过的极大团,然后回溯的过程。

以前文提到的 三个集合为例:

我们考虑如下问题,取集合 中的一个点 ,要与 集合构成极大团,那么取的点必然是 中一个点( 代表与 相邻的点)。

如果取完 之后我们再取与 相邻的点 也能加入到极大团,那么我们只取 就好了。这样做可以减少之后对 的重复计算。我们之后只需要取与 不相邻的点。

加入优化后的 C++ 代码实现:

习题

参考资料

贡献者:@Menci@WenzelTian@queenwen

本页面最近更新:2/3/2023, 12:00:00 AM更新历史

发现错误?想一起完善? 在 GitHub 上编辑此页!

本页面的全部内容在 CC BY-SA 4.0SATA 协议之条款下提供,附加条款亦可能应用

评论

0 条评论
未登录用户


Copyright © 2016 - 2023 OI Wiki Team

最近更新:fd2ec2c, 2023-02-03

联系方式:Telegram 群组 / QQ 群组