Dancing Links


本页面将介绍精确覆盖问题、重复覆盖问题,解决这两个问题的算法「X 算法」,以及用来优化 X 算法的双向十字链表 Dancing Link。本页也将介绍如何在建模的配合下使用 DLX 解决一些搜索题。

精确覆盖问题

定义

精确覆盖问题(英文:Exact Cover Problem)是指给定许多集合 以及一个集合 ,求满足以下条件的无序多元组

解释

例如,若给出

为一组合法解。

问题转化

中的所有数离散化,可以得到这么一个模型:

给定一个 01 矩阵,你可以选择一些行(row),使得最终每列(column)1都恰好有一个 1。 举个例子,我们对上文中的例子进行建模,可以得到这么一个矩阵:

其中第 行表示着 ,而这一行的每个数依次表示

实现

暴力 1

一种方法是枚举选择哪些行,最后检查这个方案是否合法。

因为每一行都有选或者不选两种状态,所以枚举行的时间复杂度是 的;

而每次检查都需要 的时间复杂度。所以总的复杂度是

暴力 2

考虑到 01 矩阵的特殊性质,每一行都可以看做一个 位二进制数。

因此原问题转化为

给定 位二进制数,要求选择一些数,使得任意两个数的与都为 0,且所有数的或为 tmp 表示的是截至目前被选中的二进制数的或。

因为每一行都有选或者不选两种状态,所以枚举行的时间复杂度为

而每次计算 tmp 都需要 的时间复杂度。所以总的复杂度为

重复覆盖问题

重复覆盖问题与精确覆盖问题类似,但没有对元素相似性的限制。下文介绍的 X 算法 原本针对精确覆盖问题,但经过一些修改和优化(已标注在其中)同样可以高效地解决重复覆盖问题。

X 算法

Donald E. Knuth 提出了 X 算法 (Algorithm X),其思想与刚才的暴力差不多,但是方便优化。

过程

继续以上文中中提到的例子为载体,得到一个这样的 01 矩阵:

  1. 此时第一行有 ,第二行有 ,第三行有 ,第四行有 ,第五行有 ,第六行有 。选择第一行,将它删除,并将所有 所在的列打上标记;

  2. 选择所有被标记的列,将它们删除,并将这些列中含 的行打上标记(重复覆盖问题无需打标记);

  3. 选择所有被标记的行,将它们删除;

    这表示这一行已被选择,且这一行的所有 所在的列不能有其他

    于是得到一个新的小 01 矩阵:

  4. 此时第一行(原来的第二行)有 ,第二行(原来的第四行)有 ,第三行(原来的第五行)有 。选择第一行(原来的第二行),将它删除,并将所有 所在的列打上标记;

  5. 选择所有被标记的列,将它们删除,并将这些列中含 的行打上标记;

  6. 选择所有被标记的行,将它们删除;

    这样就得到了一个空矩阵。但是上次删除的行 1 0 1 1 不是全 的,说明选择有误;

  7. 回溯到步骤 4,考虑选择第二行(原来的第四行),将它删除,并将所有 所在的列打上标记;

  8. 选择所有被标记的列,将它们删除,并将这些列中含 的行打上标记;

  9. 选择所有被标记的行,将它们删除;

    于是我们得到了这样的一个矩阵:

  10. 此时第一行(原来的第五行)有 ,将它们全部删除,得到一个空矩阵:

  11. 上一次删除的时候,删除的是全 的行,因此成功,算法结束。

    答案即为被删除的三行:

强烈建议自己模拟一遍矩阵删除、还原与回溯的过程后,再接着阅读下文。

通过上述步骤,可将 X 算法的流程概括如下:

  1. 对于现在的矩阵 ,选择并标记一行 ,将 添加至 中;

  2. 如果尝试了所有的 却无解,则算法结束,输出无解;

  3. 标记与 相关的行 (相关的行和列与 X 算法 中第 2 步定义相同,下同);

  4. 删除所有标记的行和列,得到新矩阵

  5. 如果 为空,且 为全 ,则算法结束,输出被删除的行组成的集合

    如果 为空,且 不全为 ,则恢复与 相关的行 以及列 ,跳转至步骤 1;

    如果 不为空,则跳转至步骤 1。

不难看出,X 算法需要大量的「删除行」、「删除列」和「恢复行」、「恢复列」的操作。

一个朴素的想法是,使用一个二维数组存放矩阵,再用四个数组分别存放每一行与之相邻的行编号,每次删除和恢复仅需更新四个数组中的元素。但由于一般问题的矩阵中 0 的数量远多于 1 的数量,这样做的空间复杂度难以接受。

Donald E. Knuth 想到了用双向十字链表来维护这些操作。

而在双向十字链表上不断跳跃的过程被形象地比喻成「跳跃」,因此被用来优化 X 算法的双向十字链表也被称为「Dancing Links」。

Dancing Links 优化的 X 算法

预编译命令

定义

双向十字链表中存在四个指针域,分别指向上、下、左、右的元素;且每个元素 在整个双向十字链表系中都对应着一个格子,因此还要表示 所在的列和所在的行,如图所示:

dlx-1

大型的双向链表则更为复杂:

dlx-2

每一行都有一个行首指示,每一列都有一个列指示。

行首指示为 first[],列指示是我们虚拟出的 个结点。

同时,每一列都有一个 siz[] 表示这一列的元素个数。

特殊地, 号结点无右结点等价于这个 Dancing Links 为空。

过程

remove 操作

remove(c) 表示在 Dancing Links 中删除第 列以及与其相关的行和列。

先将 删除,此时:

  • 左侧的结点的右结点应为 的右结点。
  • 右侧的结点的左结点应为 的左结点。

L[R[c]] = L[c], R[L[c]] = R[c];

dlx-3.png

然后顺着这一列往下走,把走过的每一行都删掉。

如何删掉每一行呢?枚举当前行的指针 ,此时:

  • 上方的结点的下结点应为 的下结点。
  • 下方的结点的上结点应为 的上结点。

注意要修改每一列的元素个数。

U[D[j]] = U[j], D[U[j]] = D[j], --siz[col[j]];

dlx-4.png

remove 函数的代码实现如下:

recover 操作

recover(c) 表示在 Dancing Links 中还原第 列以及与其相关的行和列。

recover(c)remove(c) 的逆操作,这里不再赘述。

值得注意的是, recover(c) 的所有操作的顺序与 remove(c) 的操作恰好相反。

recover(c) 的代码实现如下:

build 操作

build(r, c) 表示新建一个大小为 ,即有 行, 列的 Dancing Links。

新建 个结点作为列指示。

个点的左结点为 ,右结点为 ,上结点为 ,下结点为 。特殊地, 结点的左结点为 结点的右结点为

于是我们得到了一条链:

dlx-5.png

这样就初始化了一个 Dancing Link。

build(r, c) 的代码实现如下:

insert 操作

insert(r, c) 表示在第 行,第 列插入一个结点。

插入操作分为两种情况:

  • 如果第 行没有元素,那么直接插入一个元素,并使 first[r] 指向这个元素。

    这可以通过 first[r] = L[idx] = R[idx] = idx; 来实现。

  • 如果第 行有元素,那么将这个新元素用一种特殊的方式与 连接起来。

    设这个新元素为 ,然后:

    • 插入到 的正下方,此时:

      • 下方的结点为原来 的下结点;
      • 下方的结点(即原来 的下结点)的上结点为 ;
      • 的上结点为
      • 的下结点为

      注意记录 的所在列和所在行,以及更新这一列的元素个数。

      强烈建议读者完全掌握这几步的顺序后再继续阅读本文。

    • 插入到 的正右方,此时:

      • 右侧的结点为原来 的右结点;
      • 原来 右侧的结点的左结点为
      • 的左结点为
      • 的右结点为

      强烈建议读者完全掌握这几步的顺序后再继续阅读本文。

insert(r, c) 这个操作可以通过图片来辅助理解:

dlx-6.png

留心曲线箭头的方向。

insert(r, c) 的代码实现如下:

dance 操作

dance() 即为递归地删除以及还原各个行列的过程。

  1. 如果 号结点没有右结点,那么矩阵为空,记录答案并返回;
  2. 选择列元素个数最少的一列,并删掉这一列;
  3. 遍历这一列所有有 的行,枚举它是否被选择;
  4. 递归调用 dance(),如果可行,则返回;如果不可行,则恢复被选择的行;
  5. 如果无解,则返回。

dance() 的代码实现如下:

其中 stk[] 用来记录答案。

注意我们每次优先选择列元素个数最少的一列进行删除,这样能保证程序具有一定的启发性,使搜索树分支最少。

对于重复覆盖问题,在搜索时可以用估价函数(与

A* 中类似)进行剪枝:若当前最好情况下所选行数超过目前最优解,则可以直接返回。

模板

性质

DLX 递归及回溯的次数与矩阵中 的个数有关,与矩阵的 等参数无关。因此,它的时间复杂度是 指数级 的,理论复杂度大概在 左右,其中 为某个非常接近于 的常数, 为矩阵中 的个数。

但实际情况下 DLX 表现良好,一般能解决大部分的问题。

建模

DLX 的难点,不全在于链表的建立,而在于建模。

请确保已经完全掌握 DLX 模板后再继续阅读本文。

我们每拿到一个题,应该考虑行和列所表示的意义:

  • 行表示决策,因为每行对应着一个集合,也就对应着选/不选;

  • 列表示状态,因为第 列对应着某个条件

对于某一行而言,由于不同的列的值不尽相同,我们 由不同的状态,定义了一个决策

例题 1 P1784 数独

先考虑决策是什么。

在这一题中,每一个决策可以用形如 的有序三元组表示。

注意到“宫”并不是决策的参数,因为它 可以被每个确定的 表示

因此有 行。

再考虑状态是什么。

我们思考一下 这个决将会造成什么影响。记 所在的宫为

  1. 行用了一个 (用 列表示);

  2. 列用了一个 (用 列表示);

  3. 宫用了一个 (用 列表示);

  4. 中填入了一个数(用 列表示)。

因此有 列,共

至此,我们成功地将 的数独问题转化成了一个 行, 列,共 的精确覆盖问题。

例题 2 靶形数独

这一题与 数独 的模型构建 一模一样,主要区别在于答案的更新。

这一题可以开一个权值数组,每次找到一组数独的解时,

每个位置上的数乘上对应的权值计入答案即可。

例题 3 「NOI2005」智慧珠游戏

定义:题中给我们的智慧珠的形态,称为这个智慧珠的标准形态

显然,我们可以通过改变两个参数 (表示顺时针旋转 的次数)和 (是否水平翻转)来改变这个智慧珠的形态。

仍然,我们先考虑决策是什么。

在这一题中,每一个决策可以用形如 的有序五元组表示。

表示第 个智慧珠的标准形态的左上角的位置,序号为 ,经过了 次顺时针转

巧合的是,我们可以令 时不水平翻转, 时水平翻转,从而达到简化代码的目的。

因此有 行。

需要注意的是,因为一些不合法的填充,如

所以 在实际操作中,空的智慧珠棋盘也只需要建出 行。

再考虑状态是什么。

这一题的状态比较简单。

我们思考一下, 这个决策会造成什么影响。

  1. 某些格子被占了(用 列表示);

  2. 个智慧珠被用了(用 列表示)。

因此有 列,共

至此,我们成功地将智慧珠游戏转化成了一个 行, 列,共 的精确覆盖问题。

习题

外部链接

注释

Footnotes

  1. (两岸用语差异)台灣:直行(column)、橫列(row)

贡献者:@Hao@383494@Jimmy@WenzelTian@Clever_Jimmy@Dejia@Ir1d@夜轮_NachtgeistW@kenlig@忘怀@Renjian@L1nkzz@mgt@Yufan@Qingchuan@Chrogeek@LeverImmy

本页面最近更新:2/3/2023, 12:00:00 AM更新历史

发现错误?想一起完善? 在 GitHub 上编辑此页!

本页面的全部内容在 CC BY-SA 4.0SATA 协议之条款下提供,附加条款亦可能应用

评论

0 条评论
未登录用户


Copyright © 2016 - 2023 OI Wiki Team

最近更新:fd2ec2c, 2023-02-03

联系方式:Telegram 群组 / QQ 群组