图的着色


点着色

(讨论的是无自环无向图)

对无向图顶点着色,且相邻顶点不能同色。若 G 是 - 可着色的,但不是 - 可着色的,则称 k 是 G 的色数,记为

对任意图 G,有 ,其中 为最大度。

Brooks 定理

设连通图不是完全图也不是奇圈,则

证明

,考虑数学归纳法。

首先, 时,命题显然成立。

接下来,假设对于 时的命题成立,下面我们要逐步强化命题。

不妨只考虑 - 正则图,因为对于非正则图来说,可以看作在正则图里删去一些边构成的,而这一过程并不会影响结论。

对于任意不是完全图也不是奇圈的正则图 G,任取其中一点 v,考虑子图 ,由归纳假设知 ,接下来我们只需证明在 H 中插入 v 不会影响结论即可。

,设 H 染的 种颜色分别为 ,v 的 个邻接点为 。不妨假设 v 的这些邻接点颜色两两不同,否则命题得证。

接下来我们设所有在 H 中染成 的点以及它们之间的所有边构成子图 。不妨假设任意 2 个不同的点 一定在 的同一个连通分量中,否则若在两个连通分量中的话,可以交换其中一个连通分量所有点的颜色,从而 颜色相同。

这里的交换颜色指的是若图中只有两种颜色 a,b,那么把图中原来染成颜色 a 的点全部染成颜色 b,把图中原来染成颜色 b 的点全部染成颜色 a。

我们设上述连通分量为 ,那么 一定只能是 的路。因为 在 H 中的度为 ,所以 在 H 中的邻接点颜色一定两两不同,否则可以给 染别的颜色,从而和 v 的其他邻接点颜色重复,所以 中邻接点数量为 1, 同理。然后我们在 中取一条 的路,令其为 P,若 ,那么我们沿着 P 顺次给路上的点染色,设遇到的第一个度数大于 2 的点为 u,注意到 u 的邻接点最多只用了 种颜色,所以 u 可以重新染色,从而使 不连通。

然后我们不难发现,对任意 3 个不同的点

到这里我们对命题的强化工作就已经做完了。

接下来就很简单。首先,如果 v 的邻接点两两相邻,那么命题得证。不妨设 不相邻,在 中取 的邻接点 w,交换 中的颜色。得到的新图中,,矛盾。

至此命题证明完毕。

Welsh—Powell 算法

Welsh—Powell 算法是一种在 不限制最大着色数 时寻找着色方案的贪心算法。

对于无自环无向图 G,设 满足。

按 Welsh—Powell 算法着色后的颜色数至多为 , 该算法的时间复杂度为

过程

  1. 将当前未着色的点按度数降序排列。
  2. 将第一个点染成一个未被使用的颜色。
  3. 顺次遍历接下来的点,若当前点和所有与第一个点颜色 相同 的点 不相邻,则将该点染成与第一个点相同的颜色。
  4. 若仍有未着色的点,则回到步骤 1, 否则结束。

示例如下:

Orignal

(由 Graph Editor 生成)

我们先对点按度数降序排序,得:

次序12345678910111213
点的编号4502913610127811
度数5544433333221
1234544444332

所以 Welsh—Powell 算法着色后的颜色数最多为 5。

另外因为该图有子图 , 所以色数一定大于等于 3。

  • 第一次染色:

    Colored 1

    4 9 3 11 号点。

  • 第二次染色:

    Colored 2

    5 2 6 7 8 号点。

  • 第三次染色:

    Colored 3

    0 1 10 12 号点。

证明

对于无自环无向图 G,设 满足

, 我们取 中的子集 , 其中的元素满足

  1. , 其中

  2. 当且仅当

    1. 均不相邻

显然若将 中的点染成第 i 种颜色,则该染色方案即为 Welsh—Powell 算法给出的方案,显然有

我们只需要证明:

其中

上式左边的不等号显然成立,我们考虑右边。

首先我们不难得出:

,则 v 与 中分别至少有一个点相邻,从而有

进而

另一方面,基于序列 的构造方法,我们不难发现

两式结合即得证。

边着色

对无向图的边着色,要求相邻的边涂不同种颜色。若 G 是 k- 边可着色的,但不是 - 边可着色的,则称 k 是 G 的边色数,记为

Vizing 定理

设 G 是简单图,则

若 G 是二部图,则

为奇数()时,; 当 为偶数时,

二分图 Vizing 定理的构造性证明

按照顺序在二分图中加边。

我们在尝试加入边 的时候,我们尝试寻找对于 的编号最小的尚未被使用过的颜色,假设分别为

如果 此时我们可以直接将这条边的颜色设置为

否则假设 , 我们可以尝试将节点 连出去的颜色为 的边的颜色修改为

修改的过程可以被近似的看成是一条从 出发,依次经过颜色为 的边的有限唯一增广路。

因为增广路有限所以我们可以将增广路上所有的边反色,即原来颜色为 的修改为 ,原来颜色为 的修改为

根据二分图的性质,节点 不可能为增广路节点,否则与最小未使用颜色为 矛盾。

所以我们可以在增广之后直接将连接 的边的颜色设为

总构造时间复杂度为

本题为笔者于 2018 年命制的集训队第一轮作业题。

首先我们可以发现答案下界为度数不为 k 倍数的点的个数。

下界的构造方法是对二分图进行拆点。

, 我们将其拆为 个度数为 k 的节点和一个度数为 的节点。

, 我们将其拆为 个度数为 k 的节点。

拆出来的点在原图中的意义相同,也就是说,在满足度数限制的情况下,一条边端点可以连接任意一个拆出来的点。

根据 Vizing 定理,我们显然可以构造出该图的一种 k 染色方案。

删边部分由于和 Vizing 定理关系不大这里不再展开。

有兴趣的读者可以自行阅读笔者当时写的题解。

色多项式

表示 G 的不同 k 着色方式的总数。

在无向无环图 G 中,

  1. ,则
  2. ,则

定理:设 是 G 的点割集,且 是 G 的 阶完全子图, 个连通分支,则:

其中

参考资料

  1. Graph coloring - Wikipedia
  2. Welsh, D. J. A.; Powell, M. B. (1967), "An upper bound for the chromatic number of a graph and its application to timetabling problems", The Computer Journal, 10 (1): 85–86

贡献者:@Imple@WenzelTian@Tifa@CoderOJ@mgt@Chrogeek@zhouyuyang2002@Ir1d

本页面最近更新:2/3/2023, 12:00:00 AM更新历史

发现错误?想一起完善? 在 GitHub 上编辑此页!

本页面的全部内容在 CC BY-SA 4.0SATA 协议之条款下提供,附加条款亦可能应用

评论

0 条评论
未登录用户


Copyright © 2016 - 2023 OI Wiki Team

最近更新:fd2ec2c, 2023-02-03

联系方式:Telegram 群组 / QQ 群组